The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans.

نویسندگان

  • James F Morley
  • Heather R Brignull
  • Jill J Weyers
  • Richard I Morimoto
چکیده

Studies of the mutant gene in Huntington's disease, and for eight related neurodegenerative disorders, have identified polyglutamine (polyQ) expansions as a basis for cellular toxicity. This finding has led to a disease hypothesis that protein aggregation and cellular dysfunction can occur at a threshold of approximately 40 glutamine residues. Here, we test this hypothesis by expression of fluorescently tagged polyQ proteins (Q29, Q33, Q35, Q40, and Q44) in the body wall muscle cells of Caenorhabditis elegans and show that young adults exhibit a sharp boundary at 35-40 glutamines associated with the appearance of protein aggregates and loss of motility. Surprisingly, genetically identical animals expressing near-threshold polyQ repeats exhibited a high degree of variation in the appearance of protein aggregates and cellular toxicity that was dependent on repeat length and exacerbated during aging. The role of genetically determined aging pathways in the progression of age-dependent polyQ-mediated aggregation and cellular toxicity was tested by expressing Q82 in the background of age-1 mutant animals that exhibit an extended lifespan. We observed a dramatic delay of polyQ toxicity and appearance of protein aggregates. These data provide experimental support for the threshold hypothesis of polyQ-mediated toxicity in an experimental organism and emphasize the importance of the threshold as a point at which genetic modifiers and aging influence biochemical environment and protein homeostasis in the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Polyglutamine Model Uncouples Proteotoxicity from Aging

Polyglutamine expansions in certain proteins are the genetic determinants for nine distinct progressive neurodegenerative disorders and resultant age-related dementia. In these cases, neurodegeneration is due to the aggregation propensity and resultant toxic properties of the polyglutamine-containing proteins. We are interested in elucidating the underlying mechanisms of toxicity of the protein...

متن کامل

A new Caenorhabditis elegans model of human huntingtin 513 aggregation and toxicity in body wall muscles

Expanded polyglutamine repeats in different proteins are the known determinants of at least nine progressive neurodegenerative disorders whose symptoms include cognitive and motor impairment that worsen as patients age. One such disorder is Huntington's Disease (HD) that is caused by a polyglutamine expansion in the human huntingtin protein (htt). The polyglutamine expansion destabilizes htt le...

متن کامل

Progressive disruption of cellular protein folding in models of polyglutamine diseases.

Numerous human diseases are associated with the chronic expression of misfolded and aggregation-prone proteins. The expansion of polyglutamine residues in unrelated proteins is associated with the early onset of neurodegenerative disease. To understand how the presence of misfolded proteins leads to cellular dysfunction, we employed Caenorhabditis elegans polyglutamine aggregation models. Here,...

متن کامل

Neuronal circuitry regulates the response of Caenorhabditis elegans to misfolded proteins.

The consequence of chronic protein misfolding is the basis of many human diseases. To combat the deleterious effects of accumulated protein damage, all cells possess robust quality-control systems, specifically molecular chaperones and clearance machineries, that sense and respond to protein misfolding. However, for many protein conformational diseases, it is unclear why this quality-control sy...

متن کامل

Dynamic imaging by fluorescence correlation spectroscopy identifies diverse populations of polyglutamine oligomers formed in vivo.

Protein misfolding and aggregation are exacerbated by aging and diseases of protein conformation including neurodegeneration, metabolic diseases, and cancer. In the cellular environment, aggregates can exist as discrete entities, or heterogeneous complexes of diverse solubility and conformational state. In this study, we have examined the in vivo dynamics of aggregation using imaging methods in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 16  شماره 

صفحات  -

تاریخ انتشار 2002